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ABSTRACT

A vector majorization is a preorder of dispersion for vectors with the same
length and same sum of components. The vector majorization can be
viewed as a preorder of distance from a uniform vector. A preorder of dis-
tance from any fixed non-uniform vector of positive components, so-called
r−majorization, is a generalization of usual vector majorization. In this
paper, a new class of mappings so-called r−majorizing quadratic stochas-
tic operators was introduced. The r−majorizing quadratic stochastic
operator is a generalization of a quadratic doubly stochastic operator.
Some relevant examples are provided. Moreover, the dynamics of some
non-scrambling r−majorizing quadratic stochastic operators are studied.

Keywords: R−majorization, quadratic stochastic operators, scrambling
matrix.
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1. Introduction

The dynamics of nonlinear operators remains to be difficult and complex.
The simplest nonlinear operator is a quadratic operator. The quadratic stochas-
tic operator (in short QSO) has an incredible application in population genetics
(Lyubich, 1992). The QSO describes a distribution of the next generation in
the population system if the distribution of the current generation was given.
The QSO is a primary source for investigations of evolution of population ge-
netics. In Ganikhodjaev et al. (2013), a mathematical model of a transmission
of human ABO blood groups was described as the QSO on 7-dimensional sim-
plex and based on some numerical investigations of QSO, the future ABO blood
group distribution of Malaysian people was predicted. In Ganikhodzhaev et al.
(2011), it was given a long self-contained exposition of the recent achievements
and open problems in the theory of QSO.

The main problem in the nonlinear operator theory is to study its behavior.
This problem was not fully finished even in the class of QSO (Ganikhodzhaev
et al., 2011), (Mukhamedov and Saburov, 2010), (Mukhamedov and Saburov,
2014), (Mukhamedov et al., 2013), (Saburov, 2013). In this paper, a new class
of mappings so called r−majorizing QSO was introduced. The dynamics of
any QSO on 1D simplex is more or less clear (Lyubich, 1992). However, there
are many QSO on 2D simplex which remain to be investigated (Mukhamedov
et al., 2013). Therefore, we are aiming to study the dynamics of r−majorizing
QSO on 2D simplex.

A vector majorization is a preorder of dispersion for vectors with the same
length and same sum of components. The vector majorization can be viewed
as a preorder of distance from a uniform vector. A preorder of distance from
any fixed non-uniform vector of positive components, so-called r−majorization,
is a generalization of usual vector majorization. Several equivalent definitions
of r−majorizations and related concepts are discussed in Joe (1990). Let us
provide some necessary notions and notations related to r−majorizations.

Throughout this paper, we write vectors in the row forms.

Let p = (p1, p2, p3) ∈ R3. We write p ≥ 0 (resp. p > 0) whenever pi ≥ 0

(resp. pi > 0) for all i = 1, 3. Let ‖x‖1 =
3∑
i=1

|xi| be a norm of any x ∈ R3.

Let S2 =
{
x ∈ R3 : x ≥ 0, ‖x‖1 = 1

}
be a standard simplex. An element of

the simplex S2 is called a stochastic vector.

Definition 1.1. Let x,y and p > 0 be stochastic vectors. We say that x is
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r−majorized by y with respect to (w.r.t.) p (written x ≺rp y) if one has that

3∑

i=1

|xi − tpi| ≤
3∑

i=1

|yi − tpi|, ∀ t ∈ R. (1)

The r in r−majorization stands for relative or ratio.

Note that if p = c = ( 13 ,
1
3 ,

1
3 ) then the r−majorization w.r.t. p is nothing

but usual majorization (Joe, 1990),(Marshall et al., 2011). In this case, we
shall use usual notation ≺ for the r−majorization.

A matrix is said to be stochastic (resp. doubly stochastic) if its rows (resp.
its rows and columns) are stochastic vectors. We denote the set of all stochastic
(resp. doubly stochastic) matrices by SM (resp. DSM). Let us introduce the
following set of stochastic matrices for a positive stochastic vector p > 0

SM[p] = {P ∈ SM : pP = p}. (2)

The set SM[p] of all stochastic matrices having a common fixed distribution
p > 0 is a convex compact subset of the set of all stochastic matrices SM. It is
worth of mentioning that if p = c = ( 13 ,

1
3 ,

1
3 ) then SM[c] is nothing but a set

of all doubly stochastic matrices, i.e., SM[c] = DSM.

The following result was proven in Joe (1990), Marshall et al. (2011).

Theorem 1.1. (Joe, 1990, Marshall et al., 2011) The following are equivalent

(i) One has that x ≺rp y;

(ii) There is a stochastic matrix P ∈ SM[p] such that x = yP;

(iii) One has that

3∑

i=1

qiϕ

(
xi
pi

)
≤

3∑

i=1

qiϕ

(
yi
pi

)

for all convex continuous functions ϕ.
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2. R-Majorizing Quadratic Stochastic
Operators

Let Q = (qijk)
3
i,j,k=1 be a cubic stochastic matrix, i.e.,

3∑

k=1

qijk = 1, qijk = qjik, qijk ≥ 0, ∀i, j, k = 1, 3.

We define a quadratic stochastic operator (in short QSO) Q : S2 → S2,
Q(x) = (Q(x)1,Q(x)2,Q(x)3) associated with a given cubic stochastic matrix
Q = (qijk)

3
i,j,k=1 as follows

(Q(x))1 = x21q111 + x22q221 + x23q331 + 2x1x2q121 + 2x1x3q131 + 2x2x3q231

(Q(x))2 = x21q112 + x22q222 + x23q332 + 2x1x2q122 + 2x1x3q132 + 2x2x3q232 (3)
(Q(x))3 = x21q113 + x22q223 + x23q333 + 2x1x2q123 + 2x1x3q133 + 2x2x3q233

Remark 2.1. Here, we are using the same notation for the cubic stochastic
matrix and for the associated QSO in order to show some correlation.

We define the following stochastic vectors and square stochastic matrices
associated with the cubic stochastic matrix Q = (qijk)

3
i,j,k=1 as follows

qij• = (qij1, qij2, qij3), ∀ i, j = 1, 3, (4)
Qi = (qijk)

3
j,k=1, ∀ i = 1, 3, (5)

Qx = Q1x1 + Q2x2 + Q3x3, ∀ x ∈ S2. (6)

Remark 2.2. It is worth of mentioning that Qei
= Qi for any vertex ei =

(δi1, δi2, δi3) of the simplex S2, where δij is Kronecker’s delta symbol.

It is easy to check that the QSO has the following vector and matrix forms

Q(x) = x21q11• + x22q22• + x23q33• + 2x1x2q12•
+2x1x3q13• + 2x2x3q23•, (7)

Q(x) = xQx = x1 · xQ1 + x2 · xQ2 + x3 · xQ3, (8)

where x ∈ S2 and Qx = Q1x1 + Q2x2 + Q3x3 is a square stochastic matrix.

We write the following notation for the matrix form (8) of QSO

Q = Q1 ⊕ Q2 ⊕ Q3 (9)
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Since qij• = qji•, ∀ i, j = 1, 3 we have the following relation

Qx = Q1x1 + Q2x2 + Q3x3 =




xQ1

xQ2

xQ3


 (10)

Definition 2.1. The QSO Q : S2 → S2 given by (3) is said to be r−majorizing
w.r.t. a stochastic vector p > 0, if one has that Q1,Q2,Q3 ∈ SM[p] for i.e., all
square stochastic matrices Q1,Q2,Q3 have a common stationary distribution p.

Let

Q1 =




q11•
q12•
q13•


 , Q2 =




q12•
q22•
q23•


 , Q3 =




q13•
q23•
q33•


 , E =




1 1 1
1 1 1
1 1 1


 .

Proposition 2.1. The QSO Q : S2 → S2 given by (3) is r−majorizing w.r.t.
c = ( 13 ,

1
3 ,

1
3 ) if and only if all square stochastic matrices Q1,Q2,Q3 are doubly

stochastic and Q1 + Q2 + Q3 = E.

Proof. Only if part. Let Q : S2 → S2 be the r−majorizing with respect to
c = ( 13 ,

1
3 ,

1
3 ). We then get that cQ1 = cQ2 = cQ3 = c. This means that all

square stochastic matrices Q1,Q2,Q3 are doubly stochastic. Moreover,

Qc =
1

3
Q1 +

1

3
Q2 +

1

3
Q3 =




cQ1

cQ2

cQ3


 =

1

3
E.

Therefore, we get that Q1 + Q2 + Q3 = E.

If part. Let Q1,Q2,Q3 be square doubly stochastic matrices and Q1+Q2+
Q3 = E. We then have that cQ1 = cQ2 = cQ3 = c, i.e., Q1,Q2,Q3 ∈ SM[c].
Hence, Q : S2 → S2 is r−majorizing w.r.t. c = ( 13 ,

1
3 ,

1
3 ).

Remark 2.3. An r−majorizing QSO Q : S2 → S2 w.r.t. c = ( 13 ,
1
3 ,

1
3 ) is called

a quadratic doubly stochastic operator (Ganikhodzhaev, 1992). The dynamics of
this kind of operators was studied in Saburov and Saburov (2014a) and Saburov
and Saburov (2014b).

3. Examples

In this section, we provide some examples for an r−majorizing QSO on 2D
simplex.
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Example 3.1. Let p ∈ S2 and p > 0. Without loss of generality, we may
assume that 0 < p3 ≤ p2 ≤ p1 < 1. Let s = p2 + p3 and t = p3

p2
. It is clear that

0 < s, t ≤ 1. Let us define the following set

Sp =
{
x ∈ S2 : 0 < x3 < st, 0 ∨ (s− t) < x2 < s

0 ∨ [p1(1 + t)− t] < x1 < 1 ∧ [p1(1 + t)]} ,
where a∨ b = max{a, b} and a∧ b = min{a, b}. This set Sp ⊂ S2 is nonempty.

For any vector q1 ∈ Sp, we define the following vectors

q3 = (1 +
p2
p3

)p− p2
p3

q1, q2 = (1− p3
p2

)q1 +
p3
p2

q3.

It is easy to see that q2,q3 ∈ S2. By means of stochastic vectors q1,q2,q3,p,
we define the following square stochastic matrices

Q1 =




p
p
p


 , Q2 =




p
q2

q1


 , Q3 =




p
q1

q3


 .

Due to the construction of stochastic vectors q1,q2,q3, we have that pQ1 =
pQ2 = pQ3 = p, i.e., Q1,Q2,Q3 ∈ SM[p].

Consequently, Qq1,q2,q3 : S2 → S2 constructed by above square stochastic ma-
trices Q1,Q2,Q3

Qq1,q2,q3(x) = x21p+ x22q2 + x23q3 + 2x1x2p+ 2x1x3p+ 2x2x3q1

is an r−majorizing QSO.

We may get more concrete examples by choosing p.

Let p0 = (0.7, 0.2, 0.1). Then s = 0.3 and t = 0.5. Moreover, we have that

Sp0
=
{
x ∈ S2 : 0 < x3 < 0.15, 0 < x2 < 0.3, 0.55 < x1 < 1

}
.

This set Sp0 is nonempty and continuum. We pick up any vector q1 ∈ Sp0 ,
say q1 = (0.8, 0.15, 0.05). We find vectors q3 = 3p0 − 2q1 = (0.5, 0.3, 0.2) and
q2 = 0.5q1 + 0.5q3 = (0.65, 0.225, 0.125).

It is worth of mentioning that by choosing any vector q1 ∈ Sp0
and defining

q3 = 3p0 − 2q1 and q2 = 0.5q1 + 0.5q3, we may obtain a plenty of examples
for the r−majorizing QSO.
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Example 3.2. Let p ∈ S2 and p > 0. Without loss of generality, we may
assume that 0 < p3 ≤ p2 ≤ p1 < 1. Let e = e1 + e2 + e3 = (1, 1, 1).

Let us choose any stochastic vector r3 ∈ S2. Since p3 ≤ p2 ≤ p1, we have
that

0 ≤ p3(e− r3) = p3e− p3r3 ≤ p− p3r3 ≤ p < e.

Therefore, r = 1
1−p3p −

p3
1−p3 r3 ∈ S2 is a stochastic vector. We define

stochastic vectors r1 = p3
p1
r3 + (1 − p3

p1
)r, r2 = p3

p2
r3 + (1 − p3

p2
)r and square

stochastic matrices

Q1 =




r1
r
r


 , Q2 =




r
r2
r


 , Q3 =




r
r
r3


 .

Due to the construction of stochastic vectors r1, r2, r3, r, the square stochas-
tic matrices Q1,Q2,Q3 have a common stationary distribution p, i.e, Q1,Q2,Q3 ∈
SM[p]. Consequently, Qr1,r2,r3,r : S2 → S2 constructed by above square stochas-
tic matrices Q1,Q2,Q3

Qr1,r2,r3,r(x) = x21r1 + x22r2 + x23r3 + 2(x1x2 + x1x3 + x2x3)r

is the r−majorizing QSO.

This example also shows that we may get a plenty of examples for the
r−majorizing QSO by choosing any stochastic vector r3 ∈ S2.

4. Non-scrambling R-majorizing Quadratic
Stochastic Operators

Recall that a square stochastic matrix P is called scrambling if for any i, j
there is k such that pikpjk > 0. In other words, a square stochastic matrix P is
scrambling if and only if any two rows are not orthogonal. We denote the set
of all scrambling stochastic matrices by SSM.

Definition 4.1. The QSO Q : S2 → S2 given by (3) is said to be scrambling
if one has that Q1,Q2,Q3 ∈ SSM, i.e., all square stochastic matrices Q1,Q2,Q3

are scrambling.

We know that any scrambling square stochastic matrix P is regular, i.e., for
any x(0) ∈ Sm−1, a trajectory {x(n)} of P, where x(n+1) = x(n)P, converges
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to a unique stationary distribution of P. The similar result was proven for
scrambling r−majorizing QSO in ref. Saburov and Yusof (2014). Namely, it
was proven that the scrambling r−majorizing QSO has a unique fixed point
and its trajectory converges to its unique fixed point.

Particularly, Qq1,q2,q3 : S2 → S2 given by Example 3.1 is the scram-
bling r−majorizing QSO and its trajectory converges to its unique fixed point
p. Moreover, Qr1,r2,r3,r : S2 → S2 given by Example 3.2 is the scrambling
r−majorizing QSO if and only if (ri, r) 6= 0 for any i = 1, 2, 3. In this case, it
is regular, i.e., any trajectory starting from any initial point converges to its
unique fixed point.

In this section, we are aiming to study the dynamics of some non-scrambling
r−majorizing QSO. All examples show that the dynamics of non-scrambling
r−majorizing QSO is completely different from the dynamics of scrambling
r−majorizing QSO.

Let us consider a non-scrambling r−majorizing QSO Qr1,r2,r3,r : S2 → S2

given by Example 3.2 for the special choice of stochastic vectors r1, r2, r3, r,

Let p◦ = (p, p, 1 − 2p), r = ( 12 ,
1
2 , 0), r1 = r2 = ( 3p−12p , 3p−12p , 1−2pp ), and

r3 = e3 = (0, 0, 1) where 1
3 < p < 1

2 . We define the following square stochastic
matrices

Q1 =




r1
r
r


 , Q2 =




r
r1
r


 , Q3 =




r
r
e3


 .

and the following QSO Qr1,r : S2 → S2 associated with above square stochastic
matrices

Qr1,r(x) = (x21 + x22)r1 + x23e3 + 2(x1x2 + x1x3 + x2x3)r. (11)

Proposition 4.1. Let Qr1,r : S2 → S2 be a QSO given by (11). The following
statements hold true:

(i) Qr1,r : S2 → S2 is a non-scrambling r−majorizing QSO w.r.t. p◦;

(ii) One has that Fix(Qr1,r) = {e3,p◦};

(iii) A trajectory {x(n)} of Qr1,r converges to p◦ for any x(0) ∈ S2 \ {e3}.

Proof. Let Qr1,r : S2 → S2 be a QSO given by (11). We then get that
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Qr1,r(x) = x′ = (x′1, x
′
2, x
′
3)

Qr1,r :





x′1 = 3p−1
2p (x21 + x22) + x1x2 + x1x3 + x2x3

x′2 = 3p−1
2p (x21 + x22) + x1x2 + x1x3 + x2x3

x′3 = 1−2p
p (x21 + x22) + x23

It is clear that p◦Q1 = p◦Q2 = p◦Q3 = p◦ and Q3 is not scrambling matrix.
Therefore, Qr1,r : S2 → S2 is a non-scrambling r−majorizing QSO w.r.t. p◦.

Moreover, it is clear that x′1 = x′2 for any x(0) ∈ S2. Therefore, we shall
study the dynamics of Qr1,r : S2 → S2 on the set x1 = x2. In this case, one has
that x′3 = 1−2p

2p (1−x3)2+x23. Let f(t) = 1−2p
2p (1−t)2+t2 be a function on [0,1].

We then have that x′3 = f(x3). One can easily check that Fix(f) = {1− 2p, 1}
and its trajectory converges to the fixed point 1− 2p whenever 1

3 < p < 1
2 and

t ∈ [0, 1). Consequently, we have that Fix(Qr1,r) = {e3,p◦} and x(n)3 → 1−2p.
Since x(n)1 = x

(n)
2 =

1−x(n)
3

2 → p, the trajectory {x(n)} converges to p◦ for any
initial point x(0) ∈ S2 \ {e3}. This completes the proof.

Let us consider another non-scrambling r−majorizing QSO.

Let p0 = (0, p2, p3) ∈ S2 be a stochastic vector and e1, e2, e3 be vertices of
the simplex S2. Let us define the following square stochastic matrices

Q1 =




e1
e2
e3


 , Q2 =




e2
p0

p0


 , Q3 =




e3
p0

p0


 .

We define the following QSO Qp0
: S2 → S2 associated with above square

stochastic matrices

Qp0
(x) = x21e1 + (x22 + x23)p0 + 2x1x2e2 + 2x1x3e3 + 2x2x3p0. (12)

Proposition 4.2. Let Qp0 : S2 → S2 be a QSO given by (12). The following
statements hold true:

(i) Qp0 : S2 → S2 is a non-scrambling r−majorizing QSO w.r.t. p0;

(ii) One has that Fix(Qp0
) = {e1,p0};

(iii) A trajectory {x(n)} of Qp0
converges to p0 for any x(0) ∈ S2 \ {e1}
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Proof. Let Qp0 : S2 → S2 be a QSO given by (12). We then get that

Qp0
(x) =

(
x21; (x2 + x3)

2p2 + 2x1x2; (x2 + x3)
2p3 + 2x1x3

)
.

(i). It is clear that p0Q1 = p0Q2 = p0Q3 = p0 and Q1 is not scrambling
matrix. Therefore, Qp0

: S2 → S2 is a non-scrambling r−majorizing QSO
w.r.t. p0.

(ii). It is clear that Qp0
(x) = x if and only if x1 = 0 or x1 = 1. If x1 = 1

then x2 = x3 = 0. If x1 = 0 then x2 + x3 = 1 and x = Qp0
(0, x2, x3) = p0.

Therefore, Fix(Qp0
) = {e1,p0}.

(iii). Let {x(n)}, where x(n+1) = Qp0(x
(n)), be the trajectory of QSO given

by (12) starting from x(0) ∈ S2 \ {e1}. We then get that x(n+1)
1 = (x

(n)
1 )2 =(

x
(0)
1

)2n
. Therefore, x(n)1 tends to 0. On the other hand, we have that

∣∣∣x(n+1)
2 − p2

∣∣∣ =
∣∣∣p2
(
(x

(n)
1 )2 − 2x

(n)
1

)
+ 2x

(n)
1 x

(n)
2

∣∣∣

≤ 3p2x
(n)
1 + 2x

(n)
1 = (2 + 3p2)x

(n)
1 ,∣∣∣x(n+1)

3 − p3
∣∣∣ =

∣∣∣p3
(
(x

(n)
1 )2 − 2x

(n)
1

)
+ 2x

(n)
1 x

(n)
3

∣∣∣

≤ 3p3x
(n)
1 + 2x

(n)
1 = (2 + 3p3)x

(n)
1 .

Consequently, we get that x(n)2 , x
(n)
3 → 0. This means that the trajectory

{x(n)} converges to p0 for any initial point x(0) ∈ S2 \ {e1}. This completes
the proof.

Remark 4.1. We can see that, unlike the scrambling r−majorizing QSO,
the non-scrambling r−majorizing QSO may have many (more than one) fixed
points.
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